
PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 1

PLC Programming
Techniques – Part 2

PLC Programming
Techniques – Part 2

PLC Programming Techniques 2
Note:

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 2

Ideas presented here are just some thought starters on
programming and are not meant to be all-inclusive or critical
of others. Coding has many common elements; however,
programming techniques are unique to each individual
programmer and therefore no one “right” answer exists.

Program use such as user acceptance testing and validation
is the true test of code, not how the code is written.
However, if other factors or quality attributes are specified or
otherwise required such as, for example, modifiability and
maintainability, program structure becomes important.

PLC Programming Techniques 2
Lesson Objectives

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 3

• Review basic Motor Control Program
• Understand the how that both Hardware and Software

safety systems are sometimes required
• Look at how some programming techniques can be

used in the Simulated Environment
• Discuss how limitations in the Simulated Factory are

reflections of actual systems in Real Life.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 4

Typical arrangement for
hardwiring a motor starter &
motor using line voltage

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 5

• Standard Starter consisting of a
contactor coupled with an
electronic overload block.

• The contactor and overload both
have one NO and one NC
contact for monitoring purposes

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 6

Contactors with overload blocks (previous slide) may have
an extra set of contacts (term 97, 98) that can be utilized
as a monitor input to the PLC.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 7

Start

Stop

MCR

M1 - 1

O/L

• Begin by defining some standard
PLC inputs.

• Now the Stop Button is N.C.)
• All other inputs are N.O. for simplicity

(Notes: Could be Physical PB or even
inputs from HMI)

For this example, addressing is not necessary
and will not be discussed

N.O. = Normally Open
N.C. = Normally Closed

PLC Programming Techniques 2

1Mar2020
PLC Programming Techniques 2 ©

2020 Wayne Schaefer All rights reserved 8

Shown here, the motor starter is wired to a PLC Output with a
series connection to the Overload Monitor Contact. There are
some examples deviating from this traditional wiring, however,
the hardwired O/L contact provides an extra layer of protection.

M Conveyor Motor

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 9

Complication Factors not Addressed:

Programming Techniques is a very difficult subject to discuss since
how the program is written will depend heavily on many other
mitigating factors such as:

• Network Connected “Smart” Contactors and Starters
• Integrated Safety Systems
• Contactors monitored by a second O/L contact
• Motor systems utilizing current sensing to detect errors before they

lead to a catastrophic failure.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 10

‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐()‐‐‐‐‐‐‐
MCR Start

Conveyor
MotorStop

‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐ ‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐

M1 ‐ 1‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐

Seems rather simplistic but the idea here is that the Auxiliary
Contract from the Starter is used as the Seal, NOT the output to
the Starter. In this way, if the Starter fails to engage or is de-
energized due to can Overload, the Software Seal is disrupted
providing a second level of safety to accidental restart in case of
Auto or Manual Reset prior to the Stop Button is Pressed.

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 11

‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐()‐‐‐‐‐‐‐
M1 ‐ 1

Motor Started
MemoryStop PB

‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐ ‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐

In
Cycle

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[/]‐‐‐()‐‐‐‐‐‐‐

Motor
FaultM1 ‐ 1

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐

Conveyor
Motor

Motor Started
Memory

In the case of NOT having a second contact on the Overload
block, a simple memory can be used to detect a motor has tripped.

Fault detecting and messaging need not be complicated, but it
can be a time-consuming endeavor during program development.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 12

‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[/]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[/]‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐()‐‐‐‐‐‐‐
M1 ‐ 1

Motor Failed
to Start

‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐

Conveyor
Motor

Motor Failed
to Start

The previous network dealt with the situation in which the motor started and
then suffered a fault due to overload. However, if the motor contactor fails to
engage, a direct method of detecting the failure is shown here.

An indirect or secondary method such as zero speed, pressure or vibration
sensing should also be used in case of mechanic failure

** Anti‐race

TON
0.200s

Reset

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐

** Anti‐race ‐‐ see next page

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 13

M1 ‐ 1

Conveyor
Motor

We must always take into account the electro-mechanical delay inherent
in the system when creating fault detection programming. There will
always be a slight delay between energizing the contactor or solenoid and
seeing a monitoring input turn on so an “anti-race” timer needs to be
employed to prevent nuisance faults.

As obvious as this seems, the response delay duration is so
short that the fault bit will seal in without the programmer ever
seeing the event on a programming terminal.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 14

Note that:

Using sealing or latching programming is up to the discretion of
the programmer or may even be part of system specifications,
PLC architecture or other design need.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 15

Applying to Simulation
Programming

The same concept employed in Fault Detection can be applied to
monitoring or creating Advanced and Returned Status in the
Simulated Environment. These technique can also be carried
over to real world machines and other automatic equipment.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 16

Most of the simulations do not include monitoring off all positions
which means we need to be creative in determining how to best
mimic this type of detection.

Factoryio has a least 3 different Command (C) / Status (S)
combinations:

- Move (C), Moving (S)
- Move (C), In Position (S)
- Move (C), Actual Position (ie: Clamped) (S)

The next few slides provide some ideas on how to program using
limited information.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 17

Move (C), Moving (S) [Initial condition 0, 0]
When the Move is set to 1, Moving Status = 1 is returned until the object
in the Simulation Stops moving. Once the object stops, Moving Status is set
back = 0. The same thing occurs when the Move Command is set back to 0
and the Object moves back to its original position.

Move (C), In_Position (S) [Initial condition 0, 1]
When the Move is set to 1, In_Position Status = 0 is returned until the
object in the Simulation Stops moving. Once the object stops, In Position
is set back = 1. The same thing occurs when the Move Command is set
back to 0 and the Object moves back to its original position.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 18

Move (C), Actual Position (ie: Clamped) (S)

When Move is set to 1, there is no change in Position Status until a Part
is Captured by the Clamping Mechanism. Once a part is in position,
Camped is set = 1. Clamp position can vary depending on part size.

When Move is set to 0, Clamped Status changes back to = 0 as the
Clamp starts to open. There is no change in Status after this point in the
operation.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 19

Moving Status from
Factoryio

Advance Cylinder
Command to Factoryio

As discussed with the Contactor example earlier, the response
delay duration is very short. Status memories, such as:

Movement Complete = Advance Command AND NOT Moving

will seal in without the programmer ever seeing the event on a
programming terminal.

Without direct positional information, we need to be creative in
determining how to best mimic this type of detection. At the same
time, the delay between Issuing a Command and detecting a
change in Status via an Input needs to be addressed.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 20

‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐[/]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[/]‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐()‐‐‐‐‐‐‐
Moving

Advanced

‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐

Advance
Command

Advanced

Since many of the simulations do not include full monitoring off all
positions which means we need to be creative in determining how
to best mimic this type of detection.

** Anti‐race

TON
0.200s

Return
Command

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐

Factoryio
Running

Move (C), Moving (S) [Initial condition 0, 0]

A simple timer can be utilized to ignore any set of conditions that
is short in duration. For this example, 200ms is used.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 21

‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐[/]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[/]‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐()‐‐‐‐‐‐‐

In Position Raised

‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐

Raise
Command

Raised

** Anti‐race

TON
0.200s

Lower
Command

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐

Factoryio
Running

In both these examples, it would certainly be better if an Advanced or
Raised Proximity is used, however, this relates to real Machines in
that there are some situation where direct detection is not possible
and a secondary method must be used. Timers can work but rely on
the assumption that a motion has completed.

Move (C), In_Position (S) [Initial condition 0, 1]

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 22

‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[/]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐()‐‐‐‐‐‐‐

Advance X
Command

Moving
MemoryMoving_X

‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐

Moving
Memory

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[/]‐‐‐()‐‐‐‐‐‐‐
X ‐ Advanced

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐

Auto

Another method consists of setting up an internal
memory bit that seals in after the object expected

X ‐ Advanced

Moving_X
Moving
Memory

‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐

X ‐ Advanced

Manual

Move (C), Moving (S) [Initial condition 0, 0]

to be in motion. Once the motion has stopped, we can assume the
Advanced position has been reached. See timing diagram on next
slide.

Note the Manual and Auto Contacts in this example.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 23

Moving Status from
Factoryio

Advance Cylinder
Command to Factoryio

Advancing Memory
(Internal PLC Bit)

Returning Memory
(Internal PLC Bit)

Advanced Status
(to Factoryio or Internal)

Returned Status
(to Factoryio or Internal)

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 24

You can employ the Rockwell Trending tool to verify the predicted timing.

Move_X

Moving_X

Moving Memory

Returned Prx

Trend Screenshot

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 25

Advance

Return

Ret’d LS

Adv’d PS • Two outputs move cylinder to an
Advanced Position and then Return it
(Home) again.

• Only one direct position detection and
one pressure switch to detect build up of
pressure in the Advance Air Line.

Variation for Discussion.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 26

‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐[/]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐[/]‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐()‐‐‐‐‐‐‐

Returned
Advanced
(Clamped)

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐[]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐

Advance
Cylinder

Advanced
(Clamped)

Pressure Pulse
Snubber

TON
0.400s

Pressure
Switch

‐‐‐
‐‐‐
‐‐‐
‐‐‐
‐‐

Return
Cylinder

One reason for this configuration could involve a clamping
mechanism with no fixed advanced position due to part variances.

There is always a chance, depending on the pressure setting
and sensitivity of the Pressure Switch, that pressure build up at
beginning of a stroke or during engagement could trigger the
switch. The timer is added to ensure the pressure is steady
before signaling an Advanced State has been reached.

PLC Programming Techniques 2

1Mar2020 PLC Programming Techniques 2 © 2020 Wayne Schaefer All rights reserved 27

These slides did not address all possibilities but should give you
some better insight into programming and how to apply various
techniques to the Simulated equipment.

